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Parametric amplification of spatiotemporal localized envelope waves
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The process of parametric amplification of dispersionless and diffractionless spatiotemporal envelope waves
in nonlineary(® media is theoretically investigated in the undepleted pump limit and assuming a continuous-
wave(cw) plane wave pump. By deriving an extended paraxial envelope equation for the signal field, we show
that distortionless and efficient parametric amplification is possible for different types of localized waves,
including pulsed Bessel beams, envelop@aves and sinc-shaped envelope waves. An analytic expression of
the spectral parametric gain for polychromatic Bessel beams is also derived beyond the paraxial approximation
and takes into account higher-order dispersion effects.
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[. INTRODUCTION process spontaneously produce the proper dispersion curve
of the Bessel cone angle supporting envelpiype waves.

The study and the generation of nondiffracting spatial-The aim of this paper is to study the process of parametric
temporal localized electromagnetic or acoustic waves, sucAmplification of localized envelope waves, at the fundamen-
as X waves, focus wave modes, pulsed Bessel beams, etdal carrier frequencysg, in nonlinear dispersivg(® media
have attracted considerable and increasing interest in receptimped by a cw plane-wave pump field at frequenay.2
years(see, e.g1-10), and their potential impact for appli- By deriving an extended paraxial wave equation for the sig-
cations in optical communications, metrology, spectroscopyhal field, it is shown that efficient and distortionless amplifi-
and imaging has been pointed out. In the optical context¢ation of different types of paraxial localized envelope waves
recent investigations have been focused on the existence & possible due to the simultaneous achievement of angular
localized envelopelight waves propagating without spread- and spectral phase matching requirements. The general form
ing both in space and time in linear dispersive media as &f the spectral parametric gain for polychromatic Bessel
result of spatial-temporal coupling effe¢tsl —18. These lo- beams, beyond the quasimonochromatic and paraxial ap-
calized envelope waves are usually constructed as a superp@roximations, is also derived and the limits for distortionless
sition of monochromatic Bessel beams with a frequencyamplification are discussed. The paper is organized as fol-
dependent cone angle to allow for the simultaneoudows. In Sec. Il the basic wave equations describing paramet-
cancellation of both diffraction and dispersion at any orderfic amplification in a nonlineay! dispersive medium are
leading to undistorted propagation of the envelope lighteviewed, and an extended envelope paraxial wave equation,
wave at a group velocity which in general is distinct from thewhich includes parametric gain, material dispersion up to
phase velocity of the carri¢i1]. By specializing the general second-order, and diffraction in the paraxial limit, is derived
form of polychromatic Bessel beams originally proposed inin the undepleted pump limit. In Sec. Ill the process of para-
Ref.[11], the existence of different families of nondiffracting metric amplification is analytically studied, and distortionless
and nondispersive envelope waves propagating in dispersiygarametric amplification of three different types of localized
transparent and linear media has been recently pointed o@nvelope waves, namely pulsed Bessel beams, envelope
including pulsed Bessel bearfis3,15, luminal envelopeX  waves and sinc-shaped waves, is proven. The general expres-
waves [16], Gauss-Laguerre waved7], and subluminal sion of the spectral parametric gain is also derived for poly-
sinc-shaped envelope wavigs]. chromatic Bessel beams beyond the paraxial limit and takes

Though space-time wave localization is a purely linearinto account dispersion effects at any order. Some numerical
phenomenon and polychromatic Bessel beams can be genégesults are then presented, and the connection between the
ated in the purely linear optics realfby means of, e.g., Pparametric instability and envelope localized waves is briefly
axicon and diffraction gratings or computer holograntiseir ~ addressed. Finally, in Sec. IV the main conclusions are out-
relevance in nonlinear optical processes has been remarkaldiged.
studied in a series of recent work&9-23, which have
opened the interesting field of nonlinear optics of spatial-

temporal localized waves. Spontaneous generation of poly- 1. PROPAGATION OF SPATIOTEMPORAL WAVES
chromatic Bessel beams andtype waves mediated by a IN DISPERSIVE MEDIA WITH PARAMETRIC GAIN:
conical emission process seems to be in fact a rather general GENERAL

phenomenon in nonlinear optical processes. In particular, b
considering the processes of second-harmonic generation
x® media and the spatial-temporal conical instability/ The starting point of the analysis is the propagation scalar
Kerr media, it has been shown that the generalized phasevave equation for a linearly polarized electric field
matching conditions underlying the nonlinear interaction&(x,y,z,t) in a nonlineary(?) medium taking into account

é‘ Description of the model and the parametric wave equation
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the material dispersion at any order and without making anyubstitution (»— wg)—id;. In the following, we will study
paraxial approximation. Such an equation reé=, for in-  the propagation of a weak signal field at carrier frequengy

stance[24]): in the presence of a strong plane-wave and continuous-wave
pump field of amplitudés, in a forward interaction scheme,
2 V2 * dok?( )2 o a*pNt and assume that the material is transparent in the spectral
E+ L&+ f_w wk™(w)E(w)exp(—iwt)=puo a2 region of operation for both the pump and the signal fields.

(1) In the undepleted pump approximation, we may hence as-
sumeé&, = E,exp(k,2), wherek,=k(2wg), and the propaga-
where z is the propagation direction of the localized tion equation for the signal waVéq. (3)] reads
wave; V2=4%x?+#lay? is the transverse Laplacian;
k(w)=(w/co)n(w) is the dispersion relation defined by
the linear refractive index(w); cq is the speed of light &
in vacuum; u is the vacuum magnetic permeabilit§ w) 972
=(2m) fdw&(t)explwt) is the temporal Fourier trans- (6)
form of &£(t); and PNt is the nonlinear driving polarization
term. For a quadratic medium and neglecting dispersion
effects of second-order polarization, one can ass@fe  Where we have set(z)=x®)(z)(wo/c)’E,. Equation(6)
= eox'?(2)£?, wherex?)(z) is the relevant nonlinear sus- is the basic nonparaxial wave equation that governs disper-
ceptibility term involved in the nonlinear interaction, which Sive wave propagation with a parametric gain term.
in general is assumed to vary along the propagation direction
zto account for a quasi-phase-match{@PM) grating struc-
ture. To study parametric amplification, we assume that the
field £(t) can be described by the superposition of a weak In the case of propagation of quasimonochromatic and
quasimonochromatic signal wave at carrier frequeiagy paraxial beams, which is a rather typical experimental con-
(the envelope localized wave to be amplifiethd a strong dition, the wave equatio(6) can be simplified by accounting
pump field at the carrier frequencywg, i.e., we assume for material dispersion up to second-order and diffraction
effects in the paraxial approximation. When these assump-
tions are made for the initial coupled-wave equati@)sand
(4), one ends up with standard coupled mode equations of
) field envelopes for the fundamental and second-harmonic
t&(X Y,z exp —2iwgt) +c.cl,  (2)  fields(see, for instancé19]), or just with the envelope equa-
tion for the signal field in the undepleted pump limit. For-
mally, the envelope equation for the signal field at frequency
wp can be obtained by a multiple scale analysis of &).
see, e.g.[24]). In the standard derivation, one assumes that
t leading order the carrier wave number is given Ky
=k(wp), corresponding to a phase velocity= wy/k;, and
the envelope propagates with a group veloaity= 1k,

J
+V2E+ kz( woti ﬁ) &= —oa(2)&E explik,z),

B. The extended paraxial envelope equation

&x,y,z,t)= %[51(x,y,z,t)exq —iwgt)

where the amplitudes, , of the two waves are assumed to
vary slowly with respect to timé as compared to the expo-
nential terms. Substitution of E¢R) into Eq. (1) and setting
equal the terms oscillating at the same frequency vyields th
following coupled-wave equations:

2 2
i1+vigl+ K2 wﬁ—i% gl:_X(Z)(@) &g 3 where ki=(§k/(7w)wo. However, even in the paraxial ap-
9z Co proximation, it is known that the phase and group velocities
of localized envelope waves propagating in dispersive media
%€, ) ) e, @] @0\ .2 may differ, though by a small amount, from the previous
2 VL& K 2wt &= =20 ) 1 values to allow for simultaneous cancellation of dispersion

4) and diffraction(see, e.g.[11,13,14,18. In order to account
for slight group and phase velocity shift effects, one can
In deriving the previous equations, we neglected the nonderive a generalized envelope equation by an extension of

resonant terms in the nonlinear polarization driving termthe multiple-scale method by fixirey priori, at leading order
PN and used the following identity: in the analysis, the carrier wave numierand group veloc-

ity vg=1/k; of the envelope, wherk, andk; are close to,
but not necessarily coincident witk; andk;, respectively.
After setting &,=E (X,Y, &, 7)exp(k,£), where é=z and 7
=t—kjz is the retarded time, the equation for the envelope
E, can be obtained as a solvability condition in a multiple-
scale asymptotic analysis of E@), which is detailed in the
Appendix. Assuming that the QPM grating structw@)(z)
which is valid for any signal of the fornf(t)=.4(t)exp s periodic with a periodA satisfying the phase-matching
(—iwgt), where the operatdk®(wo+id;) is defined through condition 2m/A =|k,— 2k,| (first-order QPM, one obtains
the power series expansion k() aroundw= w, after the  the following envelope equatiofsee the Appendjx

fx dok?(w)&(w)exp —iwt)

d

={k2 wo+i =] A(t) | exp(—iwot), )
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JE &°E JE :
Oik, = —V2E,+ y i Bt — aEy— oorEY El(r,r>=f dQS(Q) Ik, (Q)rlexp(—iQ7), (12)
o0& I7? oT
() whereS({)) is the spectral amplitude for Bessel beams and
k, is the dispersion relation for the transverse wave number,
where we have set which is given by
a=k;—kZ, ® K, (Q)=[K%(wo+ Q) — (K, +k.0)2]H2 (13)
B=2(kk,—k,k.), (9) Equation(lZ) shows that the envelope wave is a superposi—
tion of monochromatic Bessel beams of spectral amplitude
y=koK+ kiz_ k;z, (10 S(Q) and with a frequency-dependent cone ardjie) given

by coso(Q)=k, (Q)/k(wg+2). To avoid divergences, the in-
) tegral in Eq.(12) is extended over the frequency range such
wo . that 6(()) is real valued. Note that if we consider material
= (2) _
Ueff_( Co) Ex(x 7 (2)exri(ky—2k;)z]). (1D dispersion up to second order, i.e., we approximate the curve
k=k(w) by a parabola at around= w,, the dispersion re-
In Eq. (10), kj=(9%k/dw?),, is the second-order dispersion lation (13) becomes

coefficient, whereas_in Edq11) the brackets, den’ote a spatial K, (Q)=(a+BQ+ 022, (14)
average. Note that, if we choke=k; andk,=k;, one ob-
tainsa=B=0, y=k,k], and the envelope equati¢d) re- where the coefficients, B, and y are given by Eqs(8)—
duces to its standard form. (10).

In the framework of the extended paraxial equatién an

lll. PARAMETRIC AMPLIFICATION OF LOCALIZED e.”"e"f’pe 'Oca'iz.ei? wavey(x.y,7) is a.g'fi.”def]e”dem solu-
ENVELOPE WAVES tion of Eq. (7) with o4:=0, i.e., it satisfies the equation

In this section we study in detail the process of parametric ) 2
amplification of localized envelope waves using either the LE,= Vi_7ﬁ+'ﬂa_7+“ E,=0. (15
extended paraxial wave equati¢n) and the general equa-
tion (6), which accounts for nonparaxial effects and materialy Foyrier-Bessel analysis of Eq15) shows that its most
dispersion at any order. As we will show in Sec. Ill A, the general solution with axial symmetry is given again by Eq.
most interesting result of the analysis is that in the frame{1) where the dispersion relation for the transverse wave
work of the paraxial modelEq. (7)] distortionlessamplifi-  nymperk, (Q) exactly matches the approximate relation
cation of phas_e-logkede_nvelope Ioca!|zed waves OCCUTS. given by Eq.(14). Different types of localized envelope
Weak wave dlstortlc_)ns induced by higher-order dispersionyayes are obtained, depending mainly on the sign of coeffi-
terms and nonparaxial effects can be accounted for by meangants B andy entering in Eq(15), i.e., on the phase and
of a Fourier-Bessel analysis of E@), which is developed in  g:qyp velocities of the wave. Here we are mainly interested
Sec. Il B. By considering the parametric amplification pro-j, solutions with a constant envelope phase, e.g., real-valued
cess in terms of polychromatic Bessel beams, dlstortlonles§nve|ope waves, which requir6Q) = S* (— Q). In fact, as
amplification of localized waves is physically motivated by \jj| pe clearer below, the parametric down-conversion of
the coincidence between the dispersion relation of the con ump field leads to simultaneous emission of phase-
angle of Bessel beams and the phase-matching condition @frejated photons at frequencieg+Q and wo—Q, and
the parametric instability at any frequency, at least whemence 1o avoid distortion effects the spectrum of the wave
higher-order dispersion effects can be neglected. must be symmetric at around,. There are mainly three
distinct classes of real-valued envelope wa\i316,18,22
A. Localized envelope waves in the absence of gain These are briefly reviewed here for the sake of clearness with

I . . ference to Fig. 1.
Before considering the process of parametric ampllflca-re . .
tion, for the sake of clearness it is worth first considering the (i) Pulsed Bessel beant$3). These localized waves are

: o : _ ’ 12
different types of envelope localized waves that can be supRPt@ined wheng=y=0 and a>0, i.e., for k,=kik;/(ky

ported in dispersive linear medja1,13,16,18 By limiting Kt _'1,)1/2 and k; = (k;*+k;k}) % In this case, from Eq.
our attention to waves with radial symmetry, the most gen{14) it follows that the transverse wave numbder is fre-
eral localized envelope wave that propagates undistorte@uency independent, and Eq=2) yields

with a phase velocity (= w/k, and a group velocity
=1/, can be found by a Fourier-Bessel analysis of &).
after setting o=0 and can be written asf(r,z,t)
=E,(r,7)exp(k,2), wherer=t—k;z is the retarded timer,
is the radial coordinate, anl,(r,t) is the wave envelope, wheres(7)=[dQS(Q)exp(=id7) is an arbitrary temporal
given by (see alsd11,14,17) profile. For instance, for a Gaussian spectral amplitude

E.i(r,7)=s(7)J —kikz (16)
r, S ri|,
nhT 7o k12+k1k§
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FIG. 1. Sketch of the intensity
profile |£4|? and the correspond-
ing spectrun(Q)) (on the top of
the three different families of en-
velope localized waves discussed
in the text: (a) pulsed Bessel
beams;(b) X waves; andc) sinc-
shaped waves. The envelope
propagates without spreading both
in space and time with a group ve-
locity vg=1k; .

»
»

0
Frequency Q

S(Q):[TO/(zwl/Z)]exp(_QZ%M), one obtains a nondif- In particular, for a flat spectrurS(Q) in thg frequency in-
fracting Bessel beam with a nondispersive Gaussian tempderval (—vea/|y|,\a/|y]) one obtains a sinc-shaped enve-

ral profile (see Fig. 1, left pictune lope wave(see Fig. 1, right pictupe
K3K" sinVa(r?+ 7%/|y|)
=exp(— 21| \| =5 Ey(r,7)= ——=— 21
Ei(r,7)=exp—7 /TO)JO( k12+k1k’1'r)' (17) 1(r,7) T (21)

Note that the wave envelope satisfies a two-dimensionathich is the simplest axially symmetric solution of the 3D
(2D) spatial Helmholtz equation, according to E45), and Helmholtz equation in spherical coordinates.
that pulsed Bessel beams exist solely in the normal disper-

sion region of the mediumk{>0). B. Parametric amplification of the wave envelope:
(i) Envelope X wave$16,22. These localized waves The extended paraxial model
are obtained whes=0 andy>0. In this case, from Eq15) Let us consider now the role of the parametric gain and

it follows that E; satisfies a 2D Klein-Gordon equation; 5ssume that the extended paraxial envelope equétianay
X-shaped solutions for such an equation have been discussgg, applied. LetA,,(r,7) be areal-valuedlocalized enve-
. o (1,

e.g., in[22]. A particularly interesting casgl6] is that of 556 wave satisfying Eq15), and let us search for a solution
luminal envelopeX waves, corresponding @=0, for which EqQ. (7) in the form E4(r,7,&)=Aun(r,7) 1(£); it then
the localized wave is a solution of the scalar 2D wave equag, ns out that the amplitude satisfies the equation:

tion. This occurs fork,=k; andk,=k; . In this case from

Eqg. (12) one obtains the following representation of luminal du Oeff
X waves in terms of Bessel beams: dz ik M- (22)
dé 2ik,
E.(r :j A0SO I (VKK QI exo —i Q7). If we assume the phase of the putip, and hence ofrg¢
(rm) SN Io( Vhakg| 2] exp ) [see Eq.(11)], such that the quantityo=— ost/(2ik,) be

(18 real and positive, the solution to EQR?2) with the initial
condition u(0)= g is given b
In particular, for an exponential spectrunS(() #O)=nolis g y

;étrlj)r/;?exp(—rdm), one obtaing16] (see Fig. 1, middle (€)= Rel o) X Qo) +1 IM( o) X — God).  (23)
We can hence conclude that an exponential amplification
E.(r.7)=R To (19 without distortion is realized under the phase locking condi-
e JKiKir 2+ (ro+i7)2] tion Im(ug)=0, the parameteqy=|o.s:|/(2k,) being the
parametric gain coefficient per unit length. The explicit ex-
Note that envelope lumina{ waves exist in the normal dis- Pression of the gain coefficien in terms of more physical

persion region of the medium. parameters reads
(iii) Sinc-shaped envelope wavels8]. These waves are
obtained wher3=0, >0, y<0 and, according to Eq15), _deffwo [ 2l
they are solutions of a three-dimensiori8D) Helmholtz Qo= Cony €0CoN,’ (24)

equation. These waves are always sublumikai(k;), and
their spectral representation in terms of Bessel beams readgherel , is the intensity of the pump wave; andn, are the
refractive indices at the fundamental and second-harmonic

N RCEl 5 . frequencies, respectively, andq=(1/2)(x'?(z)exdi(k,
Ea(r,m)= f_ V‘WdQS(Q)‘]O( Va—[AQ°T)exp(—i€r). —2k,)]) is the effective nonlinead coefficient of the second-

(20 order susceptibility. For instance, in case oftasquare-
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shaped QPM grating structure, one liag= (2/7)d, where  where the detuning terni(Q) is given by Z(Q)=—k?(Q)
d=(1/2)x? is the relevant element of thietensor involved  +k?(— Q). Note that if we consider material dispersion up

in the interaction process. to second order, for whick, () is approximated by Eq.
(14), the detuning ternY vanishes for the three types of
C. Parametric amplification of polychromatic Bessel beams: localized waves considered in Sec. Il A. If higher-order dis-
The general case persion terms are accounted for, the detuning term does not

We turn back to the general E¢§) and study the process Vanish; however, one may asszuritél k;<1. In this case,
of parametric amplification for a localized envelope wave byand for a small gain t_erm|(r|/kz<1), one can solve Egs.
taking into account nonparaxial effects and material disper{26) and(27) perturbatively by a standard multiple scate
sion at any order. To this aim, let us search for a solution ofveraging method. Assuming again that the QPM grating

Eq. (6) as a superposition of Bessel beams in the form  Structure x!?) is periodic with a periodA satisfying the
phase-matching condition ®A=|k,—2k,| (first-order

QPM), the evolution equations for the amplitudésandG at

gl(r’T'Z):{f dQ[H(Q,z)exp(—iQ7) leading order in the perturbative analysis read

+G*(Q,2)expi Q) ]Io[k, (Q)r ] explik,z), JH
2i (K, QK.)— = — 07o1(G, (28)
25 9z

wherer=t—k}z, k, is defined by Eq(13), and the initial 9G

condition H(Q,0)=S(Q2) and G({,0)=0 are assumed, co NPk

whereS(Q) is the spectral amplitude of the incident local- 2A(~ket k)7 TerH (G, 29
ized wave[see Eq(12)]. In the absence of parametric gain,

H andG are independent of i.e.,H=S andG=0, and the . )
dispersionless and diffractionless solution given by @)  WNeréoess is given by Eq.(11). The solution to Eqs(28)
is retrieved. In the presence of the parametric gain, the evdd (29) with the initial conditionH (€2,0)=S(€2), G(Q,0)
lution equations foH and G can be easily derived after the =0 IS given by

substitution of Eq.(25) into Eq. (6) and setting equal the

terms oscillating at the same frequency. This yields S(Q)
H(Q,z2)= ————[N,expA_z2)—h_expA,2)],
PH oH _ Ni—A_
—2+2|(kZ+Qk;)—= —o(2)G exdi(k,—2k,)z], (30
9z 0z
(26)
MA_(k,+Qk)HS(Q)
#G | 0G G(Q.2)= - — 5
— +2i(—k+ Ok — 0ol A+ A -
Iz X[exp\ z)—exp\_2z)], (31
=—o*(2)Hexp[—i(k,—2k,)Z] = {(Q)G,
(277 where
|
| ikt Q)= - L+ 0K+ 1600l Ky, — Q%) @

i 4(k; = 0%k;%)

andgo= — o¢s1/(2ik,), which is assumed to be real valued S(Q2)=S* (—Q), which occurs for the three types of local-
and positive without loss of generalifgee Eq(24)]. Equa- ized waves considered in Sec. lll A, one obtains
tions(25), (30), and(31) provide the most general solution to
the problem of parametric amplification of localized enve-
lope waves, and account for distortion effects due to higher-
order material dispersion terms, asymmetric wave spectrum,
and nonparaxiality. In particular, if we assume that the de- Xexp —iQ7) Ik, (Q)r]expik,z),
tuning term{ can be neglectefk, (2)=k, (—Q)] and the

wave spectrumS(()) satisfies the symmetry condition (33

E(r,7,2)=

fng(Q,z)S(Q)
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where we have introduced the spectral gain function:

Z
g(Q,Z):COS L
J1—(Qkl/k,)?
(39 0 200 400 600 0 200 400 600

[1-Qklk, | 0oz
+ — SINN —/—m————=.
1+ Qk./k, J1-(QK./k,)?
Radial coordinate r (Lm) Radial coordinate r (pm)

Note that, in the paraxial limit, which implie€)k./k,|<1 o ' (@

(b)

500

0

Time 7 (fs)
o
Time 7 (fs)

-500

= ‘ .
within the spectral extent of the wave, from E@4) one 2 | | R - 2':
obtainsg=exp(e?), i.e., one has exponential amplification = 3o Ao s N A/
without wave distortion according to the analysis of Sec. 5 . . 1 " N/ \/
mes. =4 1 A 1 : :
In order to provide some numerical insights to theoretical E b : 0% ‘ : :
analysis, let us consider parametric amplification of envelope -0 0 500 Tie 12 122 124
localized waves in periodically poled lithium niobate Time 7 (fs) Frequency (10'*1ad/s)

(PPLN). At a signal wavelengthin vacuum A ;=1550 nm
of optical communications, corresponding to a pump wave

)\2=775 nm, the material sh(?ws normal gréoup-,\’/elomty dIS-:400 Kwicn?, crystal length z=5 cm [corresponding tog,
persion k;=8.6709<1(P, k;=7.281x10"°, k;=9.836 _3g3695 m! and to a parametric gain exp)=6.8106], and
X107%%, Sl units; the dispersion properties of lithium nio- pyise duration parametes=80 fs. (8) Snapshot of the amplitude
bate have been calculated by means of a Sellmeier equatif luminal X wave in the ¢,7) plane at the entrance of the crystal.
according to [25]). For extraordinary waves, one has (b) Snapshot of the amplitude of thewave at the exit of the crystal
27/|ky—2kq| =19 um andd=d33=27 pm/V. The type of calculated by taking into account dispersion effects at any ofder.
envelope localized wave that can be amplified depends oBehavior of the on-axis field intensify(r =0,7)|2 versus retarded
the QPM grating period, which fixes the longitudinal wave time 7 at the exit of the crystalsolid line); the dashed line in the
numberk,, i.e., the phase velocity of the carrier, accordingfigure, almost overlapped with the solid one, is the corresponding
to the phase matching conditiok,—2k,=+2x/A, and  behavior predicted by Eq$33) and(34), i.e., by assuming;, ({2)
hence the group veIOCityg=1/k£=kZ/(k1ki) from the re- :kl(.—Q)., Whgreas the dotted. line i§ the behavi.or predicted ne-
quirement 8=0 [see Eq.(9)]. For the branchk,— 2k, glectln_g distortion effects. The intensity is normalized to the peak
=—2m/A, it tuns out that the coefficients and y, given ~ Mtensity of theX wave at the entrance plane of the crystal)

by Egs.(8) and(11), are always positive, i.e., phase match- Behavior of the f"spers"’” relatidq (w) of the X wave[Eq. (13)],

ing is realized solely for envelopé waves. Conversely, for ormalized tok;: exact curve(solid line) and approximate curve
the branchk,—2k,=2x/A, 7y turns out to be positive for ﬁiﬁ;ﬁi llgﬁf};\l’i&bl}i’ti%((ld)')'onﬁ ec)i(o\t,\t/:i/elme shows the expo-
A>13.634um and negative foA<13.634um, whereasy is P P ¢ '

positive for A>19.454um and negative foA<<19.454 m.
Thus in this case phase matching is realized for sinc-shap

waves when A<13'6.34 pm and for X waves when ing to the theoretical analysis, for short pulses, as in the case
Ah>a i‘?ﬁ'{é& dln atpjrltg:lj,léldr,’ Iummlfrcl)?lva?i\(l; ilzpéavxii\;leez a;i of Fig. 3 (rp=15 fs) distortion effects are clearly visible.
5’\:13 634 vanishes gnd’ hase matching is réalizedT.he main cont_ributio_n to pulse distortions can be ascribed to
for pul'sed "B‘es’sgl beams. As an r()axample Figs 92 and 3 shoh|gher-order dispersion effects, remarkably to the asymmetry
X N e ¥f the dispersion relatiok, (2) aroundQ =0 [see Figs. &)
parametric ampI|f|(;at|on in PPLN of .Iummal envelo_pe and 3d)], leading to a nonvanishing detuning tegtsY).
waves corresponding to an exponential spectrum with two
different values ofry [see Eq.(19)]. Figures 2a)and 3a),
and 2Zb) and 3b) show a gray-scale representation of the
amplitude|&,(r,t)| of the envelope wave at the entran@g The previous analysis has been concerned with the para-
and at the exi(b) of the crystal, the propagation being cal- metric amplification problem, in which a signal wave is
culated taking into account dispersion effects at any order bgeeded into the nonlinear medium; however, a related issue is
means of Eqs(25), (30), and(31) and by numerical compu- that of parametric fluorescence, i.e., the growth from noise of
tation of the integrals entering in ER5). Figures 2c) and  the signal wave at frequenay, due to the parametric insta-
3(c) show the temporal behavior of the envelope intensity orbility. It is not the aim of this paper to study in detail this
the axis, i.e., for =0, at the exit of the crystal, and com- problem; however, it is worth pointing out here that the axi-
pared with that predicted in the absence of distortion andlly symmetric perturbations that maximize the growth rate
using the approximate expression for the spectral gain giveof the parametric instability reproduce the characteristic dis-
by Egs.(33) and(34), which neglect the detuning teriif(2).  persion relation of envelope localized waves given by Eq.

FIG. 2. Parametric amplification of lumin& waves in PPLN.
PM grating period A=19.5 um, pump intensity I,

ote that, as for relatively long pulses, such as in Fig. 2
To="50 fs), distortionless amplification is obtained accord-

D. Parametric instability and localized envelope waves
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(a) (b) IA(Q, K,z
. 100 2ikz—( — )=p(Q)A(Q,K,Z)—(TeffA*(—Q,K,Z),
5o 50 (37
s o €5 where oo is given by Eq.(11), p(Q,x)=k2—ki+ «?
£ & — (k;K!+K[2—K!2)Q2, and for first-order QPMk, is deter-
o0 - mined by the phase matching conditikp—2k,= *=27/A.
The Lyapunov exponents associated with Egj7) can be
- 5 100 109 % . easily calculated and reads
Radial coordinate r (Lm) Radial coordinate r (Lm)

(K~ p(—0k)

o
o

= : - : + I

G o4l o] 0025 ol e e 2 4k,

2 : s

= N AU S I ¢ X -4 S N ee Ty

= 30 $s 1 5 5

& iy + N oepl = [p(Q,0) +p(—Q,6)]°. (38

g 0 g4 N N a4k,
10

z i The growth rate is thus maximized, reaching the valge
-100 . 112 13 14 =|oet/2k,, when the phase-matching conditigii(),«)

Time 7 (fs) Brequency (105 sadje) +p(—Q,k)=0 is satisfied, which in terms of parameters

FIG. 3. Same as Fig. 2, but for a pulse duration paramejer and() reads explicitly

—15fs. k=[Ki— K2+ (k;Kj+ k2= k)02 (39)

(14) with g=0. This means that, depending on the periodic-Note that Eq(39) exactly reproduces the dispersion relation
ity of the QPM grating, envelop& waves or sinc-shaped k, =k, () for localized envelope waves given by H34)
waves might be spontaneously generated by the parametrigter noting that3=0. This proves that the dispersion rela-
|nstablllty A similar result has been recently predicted intion for the cone ang|e of p0|ychr0matic Bessel beams form-
case of modulational mStabl'lty of plane waves in a nonlinearmg the enve|ope localized waves discussed in Sec. Ill A ex-
Kerr medium [22]. To determine the perturbations with actly matches the phase matching condition for maximum
maximum growth rate, let us consider axially symmetric per-parametric gain provided that the conditieh= k}k,/k;, re-

turt()jgtior:s which have a Fourier-Bessel representation agating envelope and phase velocities of the wave, is satisfied.
cording to

IV. CONCLUSIONS AND DISCUSSION

51(r,z,t)=f dﬂf drkkS(Q,k,2)Jo(kr)exp —iQt). ) . .

— 0 In this paper we have studied the process of optical para-
(35 metric amplification of localized envelope waves at carrier

frequencyw, in dispersive and nonlinearf® media pumped

by a plane-wave and continuous-wave pump field at fre-

quency v, in the undepleted pump approximation. The

phase matching condition for efficient parametric down-

conversion of pump photons, which can be controlled by a

After setting Eq.(35) into Eq.(6), one obtains the following
equation for the spectral amplitu®Q, «,2):

92S(Q) periodic QPM grating structure, determines the wave number
5 + [k} (wo+ Q) — «?]S(Q) k, of the localized envelope wave for maximum parametric
9z gain, i.e., its phase velocity;= wy/k,, whereas the group

velocity vy=1/k; of the envelope is determined by the addi-
tional constraintk; ki =k.k; [k;=k(wo) andk;=(dk/w),,

) o o . o are fixed by the material dispersion proper}jeghich arises
Since the coefficients in this equation are periodizione  from the simultaneous emission of photons at frequencies
can apply Floquet theory and determine the Floquet expog, +() in the down conversion of pump photons at fre-
nents, i.e., the growth rate of perturbations, which depend o§yency 2.,. The parametric amplification of different kinds

Q) and «. Assuming again the paraxial limit/k;<1, the  of |ocalized envelope waves that satisfy such a constraint,
low-gain limit |o|/k{<1 and expanding(wo+ ) Up o including pulsed Bessel beams, envelopaves, and sinc-
second order i), one can derive approximate expressionsshaped envelope waves, has been studied in detail both by
of Floquet exponents by standard multiple scale or averaginghe derivation of a generalized envelope equation in the
techniques. After setting S(Q),«,2) =A(Q,k,z)exdi(k,  paraxial and near-monochromatic limits and by a direct
+k;Q2)z], where the amplitudé\ is assumed to vary slowly analysis of the general nonparaxial equation using a poly-
with respect toz as compared to the exponential term andchromatic Bessel beam expansion. The issue of parametric
k. =kik,/kq, one finds thatA satisfies the amplitude equa- instability and envelope localized waves has been addressed
tion: as well. It is envisaged that, similarly to what was found in

=—o(z)expik,2)S* (— Q). (36)
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the case of modulational instability of plane waves in Kerrbut not necessarily coincident withg;=k(wo) and k;
media [22], envelope localized waves might be spontane-=(gk/dw),,, respectively. For consistency, it turns out that

ously generated from noise due to the parametric instabilityy o has to assumek(—k,)/k;~O(€?) and (k
z

APPENDIX: DERIVATION OF THE GENERALIZED
PARAXIAL ENVELOPE EQUATION

In this appendix we derive the envelope equationby a
multiple scale asymptotic analysis of E®) in the paraxial
approximation. First of all, it is worth rewriting Ed6) in

terms of dimensionless parameters and spatial-temporal vari-
ables to highlight the order of magnitude of various terms
entering in the equation. After introducing the dimensionless

variables &',y’,z") =k, X (x,y,z) andt’ = wgt, wherek, is
a wave number close {@ut not necessarily coincident wjth
k;=Kk(wo), Eq.(6) can be cast in the form

o d
) k2 wq l+|—)
J 51 ) ot’
+V (c/‘l k2 c1
zZ
o(z") .
= — — & explikyz'Iky), (A1)

z

where the transverse Laplacian is now applied to #iey()
spatial variables. The paraxial and quasimonochromatic a
proximations imply that; varies slowly with respect tg’,

y’ andt’, so that we assume thé&t depends ox’, y’ and

t’ through the slow variableX=ex’, Y=¢ey', and T

fhand side are of order €°.

ki)/kg
~0(e). Finally, slow spatial variableZy=2", Z;=€Z',
Z,=¢€°z' are introduced to avoid the occurrence of secular
growing terms in the asymptotic expansion. With such con-
siderations in mind and using E¢gA2), Eqg. (A1) can be
written in the form

2 o k, aé’l
{92’2 |(1)0k
. k2 . kiki Kz 9
_ i L2
kTN kefat
wi(kki+ki?) @2 p
K2 a2 T

— — &rexpik,z'1ky). (A4)

kZ
Note that with the chosen scaling, the last term in &gt)

and the operator in the square bracket on the right hand side
turn out to be of order- €2, the first term on the right hand
side in Eq.(A4) is of order~e and the terms on the left
Substitution of the power ex-
pansion(A3) into Eq. (A4), using the derivative ruIe?Z,
=&§0+26azoﬁzl+ ez(a§1+2520(922) and setting equal the

=et’, wheree is a smallness parameter that is assumed aterms of the same order ia a hierarchy of equations for
a bookkeeping parameter that organizes the asymptoti@uccessive corrections & is obtained. At leading order one

analysis. The slow dependence &f ont’ allows one to
make a power expansion of the operakdf wo(1+id;)]
entering in Eq(A1); up to order~ €2, one can set

J
k2 (O] 1+|_ 2 ,
= —_— w ——
K2 K2 K2 gt
kiki+ki? 52
_ng (A2)

k2 a2

wherek; = (9k/dw),,  andk]=(d°k/dw?),, . In addition, we

consider the small parametric gain limit by assuming in Eq.

(A1) a/k?~0O(€?). Such a choice of scaling far/k? is

motivated by the need to make diffraction, dispersion, and

parametric gain terms appearing in Hé1l) of the same

has
AN
e +£®=0, (A5)
the solution of which, for progressive waves, is
EO=E1(X,Y,T,Z1,Z,)expliZy), (AB)

where the amplitud&; is an arbitrary function of slow vari-
ablesX,Y,T,Z,, andZ,. The evolution equations of the am-
plitude E; on the spatial scaleg, and Z, are obtained as
solvability conditions in the asymptotic analysis at ordets

order of magnitude. Our aim is now to search for a solution

of Eq. (Al) as a power expansion i

§=EP+eeP+ 2P+, (A3)

such that at leading orde]‘lo) describes a wave propagating
with a phase velocity ;= wqy/k, and an envelope velocity
vg=1k;, wherek, and k; are free parameters close to,

and ~ €2, respectively. AtO(e) one obtains
AR
—+EP=u), (A7)
where
2¢(0) ()
U= _ &3 |w0kz a&3
029024 k, JT
— i JE; k; 9E; iz A8
=—Zl 07_21 wok_zé'_T EXKI 0). ( )
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To avoid the occurrence of secular growths, terms oscillating

like ~exp(*iZy) appearing inU® should vanish. This
yields the following solvability condition:

k. aEl

JE,
+"’°k T

07 (A9)

and one can assun&"=0 as a solution at this order. The
physical meaning of EqA9) is that, at leading order, the
envelopeE; propagates undistorted at a group veloaity
=1/, in terms of physical variables.

At O(€?) one obtains

ii? +£@P=u®, (A10)
where
u@=_ ﬂ_&zg(lm (1——2—V2 5
0ZodZy 972 K2
. , (0)
A
&Zi(f) o-(kzzo)g(o)* exp(ikaZo/K,). (Al11)

The solvability condition at this order is obtained by impos-
ing that the term oscillating like exiZp) in the expression of

U vanish. Note that the parametric gain contribution to the

forcing term U depends orz, by the term exfi(k,/k,
—1)Zy]0(Z), and hence it yields a nhonvanishing contribution
to the solvability condition provided that the spatial peribd
of o(z) satisfies the phase-matching conditithy— 2k,|
=2ma/A (mis an integer numb¢rand o(z) has a nonva-
nishing Fourier component of ordan. Slight deviations

PHYSICAL REVIEW E 69, 016606 (2004

_ZIE_aZEl L kg 2 2|wo(klk _k,)
9z 1922 kg L k, k,
IEy [wo\® ,2 PE;  Tetf *
X—=+ k_z> (kik{+ki?)— = <7 E1=0, (A1)

z

whereaogs is the relevant Fourier coefficient of(z), given
by Eg. (11) in the text. Taking into account tha?lellaZ'f
=(woki/k,)29°E,19T? [see Eq(A9)], Eq. (A12) yields

2

JE 1 k wo [ K1Kj JE
e 1_i_vf E,— — L—k; i
Z, 2i k§ k, \ k, aT
+— ﬁ) z(k K"+ k12_ Oeff

20l k, ) 2ik2

(A13)

If we stop the asymptotic expansion at this order, the evolu-
tion equation of the amplitudeE; reads JE;/dz’
=€dE,/9Z,+ €29E,19Z,. Using Eqs(A9) and(A13), after
reintroducing the original physical variablesx,y,z)
=(1/k,) X (x',y",z"), t=t"/wgy and settinge=1, one finally
obtains the following amplitude equation for the envelope
Ei(X,y,z,1):

2ik, e S B 7EL
| &Z z &t 1=1 7 &tz
By *
_lﬁw_a’El_o'effElv
(A14)

from perfect phase matching can be accounted for by allowwhere the coefficients, 3, andy are given by Eqs(8)—(10)

ing o(z') to depend slowly on the spatial scalg. In the
following we will consider first-order QPM, i.em=1, and
assume perfect phase matching. In this case the solvabili
condition atO(€?) reads

in the text. In the reference frame traveling at the envelope
velocity vy=1/k; , i.e. in the transformed variablés=z and

ity=t—k,z, one obtains the envelope equatitf given in

the text.
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