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Parametric amplification of spatiotemporal localized envelope waves
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The process of parametric amplification of dispersionless and diffractionless spatiotemporal envelope waves
in nonlinearx (2) media is theoretically investigated in the undepleted pump limit and assuming a continuous-
wave~cw! plane wave pump. By deriving an extended paraxial envelope equation for the signal field, we show
that distortionless and efficient parametric amplification is possible for different types of localized waves,
including pulsed Bessel beams, envelopeX waves and sinc-shaped envelope waves. An analytic expression of
the spectral parametric gain for polychromatic Bessel beams is also derived beyond the paraxial approximation
and takes into account higher-order dispersion effects.
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I. INTRODUCTION

The study and the generation of nondiffracting spat
temporal localized electromagnetic or acoustic waves, s
as X waves, focus wave modes, pulsed Bessel beams,
have attracted considerable and increasing interest in re
years~see, e.g.,@1–10#!, and their potential impact for appli
cations in optical communications, metrology, spectrosco
and imaging has been pointed out. In the optical cont
recent investigations have been focused on the existenc
localizedenvelopelight waves propagating without sprea
ing both in space and time in linear dispersive media a
result of spatial-temporal coupling effects@11–18#. These lo-
calized envelope waves are usually constructed as a sup
sition of monochromatic Bessel beams with a frequen
dependent cone angle to allow for the simultaneo
cancellation of both diffraction and dispersion at any ord
leading to undistorted propagation of the envelope li
wave at a group velocity which in general is distinct from t
phase velocity of the carrier@11#. By specializing the genera
form of polychromatic Bessel beams originally proposed
Ref. @11#, the existence of different families of nondiffractin
and nondispersive envelope waves propagating in disper
transparent and linear media has been recently pointed
including pulsed Bessel beams@13,15#, luminal envelopeX
waves @16#, Gauss-Laguerre waves@17#, and subluminal
sinc-shaped envelope waves@18#.

Though space-time wave localization is a purely line
phenomenon and polychromatic Bessel beams can be g
ated in the purely linear optics realm~by means of, e.g.
axicon and diffraction gratings or computer holograms!, their
relevance in nonlinear optical processes has been remark
studied in a series of recent works@19–23#, which have
opened the interesting field of nonlinear optics of spat
temporal localized waves. Spontaneous generation of p
chromatic Bessel beams andX-type waves mediated by
conical emission process seems to be in fact a rather ge
phenomenon in nonlinear optical processes. In particular
considering the processes of second-harmonic generatio
x (2) media and the spatial-temporal conical instability inx (3)

Kerr media, it has been shown that the generalized ph
matching conditions underlying the nonlinear interacti
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process spontaneously produce the proper dispersion c
of the Bessel cone angle supporting envelopeX-type waves.
The aim of this paper is to study the process of parame
amplification of localized envelope waves, at the fundam
tal carrier frequencyv0, in nonlinear dispersivex (2) media
pumped by a cw plane-wave pump field at frequency 2v0.
By deriving an extended paraxial wave equation for the s
nal field, it is shown that efficient and distortionless ampli
cation of different types of paraxial localized envelope wav
is possible due to the simultaneous achievement of ang
and spectral phase matching requirements. The general
of the spectral parametric gain for polychromatic Bes
beams, beyond the quasimonochromatic and paraxial
proximations, is also derived and the limits for distortionle
amplification are discussed. The paper is organized as
lows. In Sec. II the basic wave equations describing param
ric amplification in a nonlinearx (2) dispersive medium are
reviewed, and an extended envelope paraxial wave equa
which includes parametric gain, material dispersion up
second-order, and diffraction in the paraxial limit, is deriv
in the undepleted pump limit. In Sec. III the process of pa
metric amplification is analytically studied, and distortionle
parametric amplification of three different types of localiz
envelope waves, namely pulsed Bessel beams, enveloX
waves and sinc-shaped waves, is proven. The general ex
sion of the spectral parametric gain is also derived for po
chromatic Bessel beams beyond the paraxial limit and ta
into account dispersion effects at any order. Some numer
results are then presented, and the connection between
parametric instability and envelope localized waves is brie
addressed. Finally, in Sec. IV the main conclusions are o
lined.

II. PROPAGATION OF SPATIOTEMPORAL WAVES
IN DISPERSIVE MEDIA WITH PARAMETRIC GAIN:

GENERAL

A. Description of the model and the parametric wave equation

The starting point of the analysis is the propagation sca
wave equation for a linearly polarized electric fie
E(x,y,z,t) in a nonlinearx (2) medium taking into accoun
©2004 The American Physical Society06-1
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the material dispersion at any order and without making
paraxial approximation. Such an equation reads~see, for in-
stance,@24#!:

]2E
]z2

1¹'
2 E1E

2`

`

dvk2~v!Ê~v!exp~2 ivt !5m0

]2P NL

]t2
,

~1!

where z is the propagation direction of the localize
wave; ¹'

2 5]2/]x21]2/]y2 is the transverse Laplacian
k(v)5(v/c0)n(v) is the dispersion relation defined b
the linear refractive indexn(v); c0 is the speed of light
in vacuum;m0 is the vacuum magnetic permeability;Ê(v)
5(2p)21*dvE(t)exp(ivt) is the temporal Fourier trans
form of E(t); andP NL is the nonlinear driving polarization
term. For a quadratic medium and neglecting dispers
effects of second-order polarization, one can assumeP NL

5e0x (2)(z)E 2, wherex (2)(z) is the relevant nonlinear sus
ceptibility term involved in the nonlinear interaction, whic
in general is assumed to vary along the propagation direc
z to account for a quasi-phase-matching~QPM! grating struc-
ture. To study parametric amplification, we assume that
field E(t) can be described by the superposition of a we
quasimonochromatic signal wave at carrier frequencyv0
~the envelope localized wave to be amplified! and a strong
pump field at the carrier frequency 2v0, i.e., we assume

E~x,y,z,t !5
1

2
@E1~x,y,z,t !exp~2 iv0t !

1E2~x,y,z,t !exp~22iv0t !1c.c.#, ~2!

where the amplitudesE1,2 of the two waves are assumed
vary slowly with respect to timet as compared to the expo
nential terms. Substitution of Eq.~2! into Eq. ~1! and setting
equal the terms oscillating at the same frequency yields
following coupled-wave equations:

]2E 1

]z2
1¹'

2 E11k2S v01 i
]

]t D E152x (2)S v0

c0
D 2

E1* E2 ~3!

]2E 2

]z2
1¹'

2 E21k2S 2v01 i
]

]t D E2522x (2)S v0

c0
D 2

E 1
2 .

~4!

In deriving the previous equations, we neglected the n
resonant terms in the nonlinear polarization driving te
P NL and used the following identity:

E
2`

`

dvk2~v!Ê~v!exp~2 ivt !

5Fk2S v01 i
]

]t DA~ t !Gexp~2 iv0t !, ~5!

which is valid for any signal of the formE(t)5A(t)exp
(2iv0t), where the operatork2(v01 i ] t) is defined through
the power series expansion ofk2(v) aroundv5v0 after the
01660
y
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substitution (v2v0)→ i ] t . In the following, we will study
the propagation of a weak signal field at carrier frequencyv0
in the presence of a strong plane-wave and continuous-w
pump field of amplitudeE2 in a forward interaction scheme
and assume that the material is transparent in the spe
region of operation for both the pump and the signal fiel
In the undepleted pump approximation, we may hence
sumeE25E2exp(ik2z), wherek25k(2v0), and the propaga-
tion equation for the signal wave@Eq. ~3!# reads

]2E 1

]z2
1¹'

2 E11k2S v01 i
]

]t D E152s~z!E1* exp~ ik2z!,

~6!

where we have sets(z)[x (2)(z)(v0 /c0)2E2. Equation~6!
is the basic nonparaxial wave equation that governs dis
sive wave propagation with a parametric gain term.

B. The extended paraxial envelope equation

In the case of propagation of quasimonochromatic a
paraxial beams, which is a rather typical experimental c
dition, the wave equation~6! can be simplified by accounting
for material dispersion up to second-order and diffract
effects in the paraxial approximation. When these assu
tions are made for the initial coupled-wave equations~3! and
~4!, one ends up with standard coupled mode equation
field envelopes for the fundamental and second-harmo
fields~see, for instance,@19#!, or just with the envelope equa
tion for the signal field in the undepleted pump limit. Fo
mally, the envelope equation for the signal field at frequen
v0 can be obtained by a multiple scale analysis of Eq.~6!
~see, e.g.,@24#!. In the standard derivation, one assumes t
at leading order the carrier wave number is given byk1
5k(v0), corresponding to a phase velocityv f5v0 /k1, and
the envelope propagates with a group velocityvg51/k18 ,
where k185(]k/]v)v0

. However, even in the paraxial ap
proximation, it is known that the phase and group velocit
of localized envelope waves propagating in dispersive me
may differ, though by a small amount, from the previo
values to allow for simultaneous cancellation of dispers
and diffraction~see, e.g.,@11,13,14,18#!. In order to account
for slight group and phase velocity shift effects, one c
derive a generalized envelope equation by an extensio
the multiple-scale method by fixinga priori, at leading order
in the analysis, the carrier wave numberkz and group veloc-
ity vg51/kz8 of the envelope, wherekz and kz8 are close to,
but not necessarily coincident with,k1 andk18 , respectively.
After setting E15E1(x,y,j,t)exp(ikzj), where j5z and t
5t2kz8z is the retarded time, the equation for the envelo
E1 can be obtained as a solvability condition in a multip
scale asymptotic analysis of Eq.~6!, which is detailed in the
Appendix. Assuming that the QPM grating structurex (2)(z)
is periodic with a periodL satisfying the phase-matchin
condition 2p/L5uk222kzu ~first-order QPM!, one obtains
the following envelope equation~see the Appendix!:
6-2
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2ikz

]E1

]j
52¹'

2 E11g
]2E1

]t2
2 ib

]E1

]t
2aE12se f fE1* ,

~7!

where we have set

a[k1
22kz

2 , ~8!

b[2~k1k182kzkz8!, ~9!

g[k1k191k18
22kz8

2 , ~10!

se f f[S v0

c0
D 2

E2^x
(2)~z!exp@ i ~k222kz!z#&. ~11!

In Eq. ~10!, k195(]2k/]v2)v0
is the second-order dispersio

coefficient, whereas in Eq.~11! the brackets denote a spati
average. Note that, if we chosekz5k1 andkz85k18 , one ob-
tainsa5b50, g5k1k19 , and the envelope equation~7! re-
duces to its standard form.

III. PARAMETRIC AMPLIFICATION OF LOCALIZED
ENVELOPE WAVES

In this section we study in detail the process of parame
amplification of localized envelope waves using either
extended paraxial wave equation~7! and the general equa
tion ~6!, which accounts for nonparaxial effects and mate
dispersion at any order. As we will show in Sec. III A, th
most interesting result of the analysis is that in the fram
work of the paraxial model@Eq. ~7!# distortionlessamplifi-
cation of phase-lockedenvelope localized waves occur
Weak wave distortions induced by higher-order dispers
terms and nonparaxial effects can be accounted for by m
of a Fourier-Bessel analysis of Eq.~6!, which is developed in
Sec. III B. By considering the parametric amplification pr
cess in terms of polychromatic Bessel beams, distortion
amplification of localized waves is physically motivated
the coincidence between the dispersion relation of the c
angle of Bessel beams and the phase-matching conditio
the parametric instability at any frequency, at least wh
higher-order dispersion effects can be neglected.

A. Localized envelope waves in the absence of gain

Before considering the process of parametric amplifi
tion, for the sake of clearness it is worth first considering
different types of envelope localized waves that can be s
ported in dispersive linear media@11,13,16,18#. By limiting
our attention to waves with radial symmetry, the most g
eral localized envelope wave that propagates undisto
with a phase velocityv f5v/kz and a group velocityvg

51/kz8 can be found by a Fourier-Bessel analysis of Eq.~6!
after setting s50 and can be written asE1(r ,z,t)
5E1(r ,t)exp(ikzz), wheret5t2kz8z is the retarded time,r
is the radial coordinate, andE1(r ,t) is the wave envelope
given by ~see also@11,14,17#!
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E1~r ,t!5E dVS~V!J0@k'~V!r #exp~2 iVt!, ~12!

whereS(V) is the spectral amplitude for Bessel beams a
k' is the dispersion relation for the transverse wave num
which is given by

k'~V!5@k2~v01V!2~kz1kz8V!2#1/2. ~13!

Equation~12! shows that the envelope wave is a superpo
tion of monochromatic Bessel beams of spectral amplitu
S(V) and with a frequency-dependent cone angleu~V! given
by cosu(V)5k'(V)/k(v01V). To avoid divergences, the in
tegral in Eq.~12! is extended over the frequency range su
that u~V! is real valued. Note that if we consider materi
dispersion up to second order, i.e., we approximate the cu
k5k(v) by a parabola at aroundv5v0, the dispersion re-
lation ~13! becomes

k'~V!5~a1bV1gV2!1/2, ~14!

where the coefficientsa, b, and g are given by Eqs.~8!–
~10!.

In the framework of the extended paraxial equation~7!, an
envelope localized waveE1(x,y,t) is a j-independent solu-
tion of Eq. ~7! with se f f50, i.e., it satisfies the equation

LE1[S ¹'
2 2g

]2

]t2
1 ib

]

]t
1a D E150. ~15!

A Fourier-Bessel analysis of Eq.~15! shows that its most
general solution with axial symmetry is given again by E
~12!, where the dispersion relation for the transverse wa
number k'(V) exactly matches the approximate relatio
given by Eq. ~14!. Different types of localized envelop
waves are obtained, depending mainly on the sign of coe
cientsa, b andg entering in Eq.~15!, i.e., on the phase an
group velocities of the wave. Here we are mainly interes
in solutions with a constant envelope phase, e.g., real-va
envelope waves, which requiresS(V)5S* (2V). In fact, as
will be clearer below, the parametric down-conversion
pump field leads to simultaneous emission of pha
correlated photons at frequenciesv01V and v02V, and
hence to avoid distortion effects the spectrum of the wa
must be symmetric at aroundv0. There are mainly three
distinct classes of real-valued envelope waves@13,16,18,22#.
These are briefly reviewed here for the sake of clearness
reference to Fig. 1.

~i! Pulsed Bessel beams@13#. These localized waves ar
obtained whenb5g50 and a.0, i.e., for kz5k1k18/(k18

2

1k1k19)
1/2 and kz85(k18

21k1k19)
1/2. In this case, from Eq.

~14! it follows that the transverse wave numberk' is fre-
quency independent, and Eq.~12! yields

E1~r ,t!5s~t!J0SA k1
3k19

k18
21k1k19

r D , ~16!

wheres(t)5*dVS(V)exp(2iVt) is an arbitrary tempora
profile. For instance, for a Gaussian spectral amplitu
6-3
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FIG. 1. Sketch of the intensity
profile uE 1u2 and the correspond
ing spectrumS(V) ~on the top! of
the three different families of en
velope localized waves discusse
in the text: ~a! pulsed Bessel
beams;~b! X waves; and~c! sinc-
shaped waves. The envelop
propagates without spreading bo
in space and time with a group ve
locity vg51/kz8 .
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S(V)5@t0 /(2p1/2)#exp(2V2t0
2/4), one obtains a nondif

fracting Bessel beam with a nondispersive Gaussian tem
ral profile ~see Fig. 1, left picture!:

E1~r ,t!5exp~2t2/t0
2!J0SA k1

3k19

k18
21k1k19

r D . ~17!

Note that the wave envelope satisfies a two-dimensio
~2D! spatial Helmholtz equation, according to Eq.~15!, and
that pulsed Bessel beams exist solely in the normal dis
sion region of the medium (k19.0).

~ii ! Envelope X waves@16,22#. These localized wave
are obtained whenb50 andg.0. In this case, from Eq.~15!
it follows that E1 satisfies a 2D Klein-Gordon equation
X-shaped solutions for such an equation have been discu
e.g., in @22#. A particularly interesting case@16# is that of
luminal envelopeX waves, corresponding toa50, for which
the localized wave is a solution of the scalar 2D wave eq
tion. This occurs forkz5k1 and kz85k18 . In this case from
Eq. ~12! one obtains the following representation of lumin
X waves in terms of Bessel beams:

E1~r ,t!5E dVS~V!J0~Ak1k19uVur !exp~2 iVt!.

~18!

In particular, for an exponential spectrumS(V)
5(t0/2)exp(2t0uVu), one obtains@16# ~see Fig. 1, middle
picture!:

E1~r ,t!5ReH t0

Ak1k19r
21~t01 i t!2J . ~19!

Note that envelope luminalX waves exist in the normal dis
persion region of the medium.

~iii ! Sinc-shaped envelope waves@18#. These waves are
obtained whenb50, a.0, g,0 and, according to Eq.~15!,
they are solutions of a three-dimensional~3D! Helmholtz
equation. These waves are always subluminal (kz8.k18), and
their spectral representation in terms of Bessel beams re

E1~r ,t!5E
2Aa/ugu

Aa/ugu
dVS~V!J0~Aa2uguV2r !exp~2 iVt!.

~20!
01660
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In particular, for a flat spectrumS(V) in the frequency in-
terval (2Aa/ugu,Aa/ugu) one obtains a sinc-shaped env
lope wave~see Fig. 1, right picture!,

E1~r ,t!5
sinAa~r 21t2/ugu!

Ar 21t2/ugu
~21!

which is the simplest axially symmetric solution of the 3
Helmholtz equation in spherical coordinates.

B. Parametric amplification of the wave envelope:
The extended paraxial model

Let us consider now the role of the parametric gain a
assume that the extended paraxial envelope equation~7! may
be applied. LetAenv(r ,t) be a real-valued localized enve-
lope wave satisfying Eq.~15!, and let us search for a solutio
to Eq. ~7! in the form E1(r ,t,j)5Aenv(r ,t)m(j); it then
turns out that the amplitudem satisfies the equation:

dm

dj
52

se f f

2ikz
m* . ~22!

If we assume the phase of the pumpE3, and hence ofse f f
@see Eq.~11!#, such that the quantityq0[2se f f /(2ikz) be
real and positive, the solution to Eq.~22! with the initial
conditionm(0)5m0 is given by

m~j!5Re~m0!exp~q0j!1 i Im~m0!exp~2q0j!. ~23!

We can hence conclude that an exponential amplifica
without distortion is realized under the phase locking con
tion Im(m0)50, the parameterq05use f fu/(2kz) being the
parametric gain coefficient per unit length. The explicit e
pression of the gain coefficientq0 in terms of more physica
parameters reads

q05
de f fv0

c0n1
A 2I 2

e0c0n2
, ~24!

whereI 2 is the intensity of the pump wave,n1 andn2 are the
refractive indices at the fundamental and second-harmo
frequencies, respectively, andde f f5(1/2)^x (2)(z)exp@i(k2
22k1)#& is the effective nonlineard coefficient of the second
order susceptibility. For instance, in case of a6 square-
6-4



s
b
e
o

,
l-

n,

v
e

p

f
is-
not

.

g

PARAMETRIC AMPLIFICATION OF SPATIOTEMPORAL . . . PHYSICAL REVIEW E 69, 016606 ~2004!
shaped QPM grating structure, one hasde f f5(2/p)d, where
d5(1/2)x (2) is the relevant element of thed-tensor involved
in the interaction process.

C. Parametric amplification of polychromatic Bessel beams:
The general case

We turn back to the general Eq.~6! and study the proces
of parametric amplification for a localized envelope wave
taking into account nonparaxial effects and material disp
sion at any order. To this aim, let us search for a solution
Eq. ~6! as a superposition of Bessel beams in the form

E1~r ,t,z!5 H E dV@H~V,z!exp~2 iVt!

1G* ~V,z!exp~ iVt!#J0@k'~V!r #J exp~ ikzz!,

~25!

wheret5t2kz8z, k' is defined by Eq.~13!, and the initial
condition H(V,0)5S(V) and G(V,0)50 are assumed
whereS(V) is the spectral amplitude of the incident loca
ized wave@see Eq.~12!#. In the absence of parametric gai
H andG are independent ofz, i.e.,H5S andG50, and the
dispersionless and diffractionless solution given by Eq.~12!
is retrieved. In the presence of the parametric gain, the e
lution equations forH andG can be easily derived after th
substitution of Eq.~25! into Eq. ~6! and setting equal the
terms oscillating at the same frequency. This yields

]2H

]z2
12i ~kz1Vkz8!

]H

]z
52s~z!G exp@ i ~k222kz!z#,

~26!

]2G

]z2
12i ~2kz1Vkz8!

]G

]z

52s* ~z!Hexp[2 i ~k222kz!z] 2z~V!G,

~27!
d

o
e
e
um
de

n

01660
y
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where the detuning termz~V! is given byz(V)[2k'
2 (V)

1k'
2 (2V). Note that if we consider material dispersion u

to second order, for whichk'(V) is approximated by Eq.
~14!, the detuning termz vanishes for the three types o
localized waves considered in Sec. III A. If higher-order d
persion terms are accounted for, the detuning term does
vanish; however, one may assumeuzu/kz

2!1. In this case,
and for a small gain term (usu/kz

2!1), one can solve Eqs
~26! and~27! perturbatively by a standard multiple scale~or
averaging! method. Assuming again that the QPM gratin
structure x (2) is periodic with a periodL satisfying the
phase-matching condition 2p/L5uk222kzu ~first-order
QPM!, the evolution equations for the amplitudesH andG at
leading order in the perturbative analysis read

2i ~kz1Vkz8!
]H

]z
52se f fG, ~28!

2i ~2kz1Vkz8!
]G

]z
52se f f* H2zG, ~29!

wherese f f is given by Eq.~11!. The solution to Eqs.~28!
and ~29! with the initial conditionH(V,0)5S(V), G(V,0)
50 is given by

H~V,z!5
S~V!

l12l2
@l1exp~l2z!2l2exp~l1z!#,

~30!

G~V,z!52
l1l2~kz1Vkz8!S~V!

kzq0~l12l2!

3@exp~l1z!2exp~l2z!#, ~31!

where
l65
2 i z~kz1Vkz8!6A2z2~kz1Vkz8!2116uq0u2kz

2~kz
22V2kz8

2!

4~kz
22V2kz8

2!
~32!
l-
andq052se f f /(2ikz), which is assumed to be real value
and positive without loss of generality@see Eq.~24!#. Equa-
tions~25!, ~30!, and~31! provide the most general solution t
the problem of parametric amplification of localized env
lope waves, and account for distortion effects due to high
order material dispersion terms, asymmetric wave spectr
and nonparaxiality. In particular, if we assume that the
tuning termz can be neglected@k'(V).k'(2V)# and the
wave spectrumS(V) satisfies the symmetry conditio
-
r-

,
-

S(V)5S* (2V), which occurs for the three types of loca
ized waves considered in Sec. III A, one obtains

E1~r ,t,z!5 H E dVg~V,z!S~V!

3exp~2 iVt!J0@k'~V!r #J exp~ ikzz!,

~33!
6-5
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where we have introduced the spectral gain function:

g~V,z!5coshS q0z

A12~Vkz8/kz!
2D

1A12Vkz8/kz

11Vkz8/kz

sinhS q0z

A12~Vkz8/kz!
2D .

~34!

Note that, in the paraxial limit, which impliesuVkz8/kzu!1
within the spectral extent of the wave, from Eq.~34! one
obtainsg.exp(q0z), i.e., one has exponential amplificatio
without wave distortion according to the analysis of S
III B.

In order to provide some numerical insights to theoreti
analysis, let us consider parametric amplification of envel
localized waves in periodically poled lithium nioba
~PPLN!. At a signal wavelength~in vacuum! l151550 nm
of optical communications, corresponding to a pump wav
l25775 nm, the material shows normal group-velocity d
persion (k158.67093106, k1857.28131029, k1959.836
310226, SI units; the dispersion properties of lithium nio
bate have been calculated by means of a Sellmeier equ
according to @25#!. For extraordinary waves, one ha
2p/uk222k1u.19 mm andd5d33.27 pm/V. The type of
envelope localized wave that can be amplified depends
the QPM grating periodL, which fixes the longitudinal wave
numberkz , i.e., the phase velocity of the carrier, accordi
to the phase matching conditionk222kz562p/L, and
hence the group velocityvg51/kz85kz /(k1k18) from the re-
quirement b50 @see Eq. ~9!#. For the branchk222kz
522p/L, it turns out that the coefficientsa and g, given
by Eqs.~8! and ~11!, are always positive, i.e., phase matc
ing is realized solely for envelopeX waves. Conversely, fo
the branchk222kz52p/L, g turns out to be positive for
L.13.634mm and negative forL,13.634mm, whereasa is
positive forL.19.454mm and negative forL,19.454mm.
Thus in this case phase matching is realized for sinc-sha
waves when L,13.634 mm and for X waves when
L.13.634mm. In particular, luminal envelopeX waves are
phase matched atL519.454mm, for which a vanishes. At
L513.634mm, g vanishes and phase matching is realiz
for pulsed Bessel beams. As an example, Figs. 2 and 3 s
parametric amplification in PPLN of luminal envelopeX
waves corresponding to an exponential spectrum with
different values oft0 @see Eq.~19!#. Figures 2~a!and 3~a!,
and 2~b! and 3~b! show a gray-scale representation of t
amplitudeuE1(r ,t)u of the envelope wave at the entrance~a!
and at the exit~b! of the crystal, the propagation being ca
culated taking into account dispersion effects at any orde
means of Eqs.~25!, ~30!, and~31! and by numerical compu
tation of the integrals entering in Eq.~25!. Figures 2~c! and
3~c! show the temporal behavior of the envelope intensity
the axis, i.e., forr 50, at the exit of the crystal, and com
pared with that predicted in the absence of distortion a
using the approximate expression for the spectral gain g
by Eqs.~33! and~34!, which neglect the detuning termz~V!.
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Note that, as for relatively long pulses, such as in Fig
(t0550 fs), distortionless amplification is obtained accor
ing to the theoretical analysis, for short pulses, as in the c
of Fig. 3 (t0515 fs) distortion effects are clearly visible
The main contribution to pulse distortions can be ascribed
higher-order dispersion effects, remarkably to the asymm
of the dispersion relationk'(V) aroundV50 @see Figs. 2~d!
and 3~d!#, leading to a nonvanishing detuning termz~V!.

D. Parametric instability and localized envelope waves

The previous analysis has been concerned with the p
metric amplification problem, in which a signal wave
seeded into the nonlinear medium; however, a related issu
that of parametric fluorescence, i.e., the growth from noise
the signal wave at frequencyv0 due to the parametric insta
bility. It is not the aim of this paper to study in detail th
problem; however, it is worth pointing out here that the a
ally symmetric perturbations that maximize the growth ra
of the parametric instability reproduce the characteristic d
persion relation of envelope localized waves given by E

FIG. 2. Parametric amplification of luminalX waves in PPLN.
QPM grating period L.19.5 mm, pump intensity I 2

5400 kW/cm2, crystal length z55 cm @corresponding toq0

538.3695 m21 and to a parametric gain exp(q0z)56.8106], and
pulse duration parametert0580 fs. ~a! Snapshot of the amplitude
of luminal X wave in the (r ,t) plane at the entrance of the crysta
~b! Snapshot of the amplitude of theX wave at the exit of the crysta
calculated by taking into account dispersion effects at any order~c!
Behavior of the on-axis field intensityuE(r 50,t)u2 versus retarded
time t at the exit of the crystal~solid line!; the dashed line in the
figure, almost overlapped with the solid one, is the correspond
behavior predicted by Eqs.~33! and ~34!, i.e., by assumingk'(V)
.k'(2V), whereas the dotted line is the behavior predicted
glecting distortion effects. The intensity is normalized to the pe
intensity of theX wave at the entrance plane of the crystal.~d!
Behavior of the dispersion relationk'(v) of theX wave@Eq. ~13!#,
normalized tok1: exact curve~solid line! and approximate curve
~dashed line! given by Eq.~14!. The dotted line shows the expo
nential spectral amplitudeS(v) of the X wave.
6-6
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~14! with b50. This means that, depending on the period
ity of the QPM grating, envelopeX waves or sinc-shape
waves might be spontaneously generated by the param
instability. A similar result has been recently predicted
case of modulational instability of plane waves in a nonlin
Kerr medium @22#. To determine the perturbations wit
maximum growth rate, let us consider axially symmetric p
turbations which have a Fourier-Bessel representation
cording to

E1~r ,z,t !5E
2`

`

dVE
0

`

dkkS~V,k,z!J0~kr !exp~2 iVt !.

~35!

After setting Eq.~35! into Eq. ~6!, one obtains the following
equation for the spectral amplitudeS(V,k,z):

]2S~V!

]z2
1@k2~v01V!2k2#S~V!

52s~z!exp~ ik2z!S* ~2V!. ~36!

Since the coefficients in this equation are periodic inz, one
can apply Floquet theory and determine the Floquet ex
nents, i.e., the growth rate of perturbations, which depend
V and k. Assuming again the paraxial limitk/k1!1, the
low-gain limit usu/k1

2!1 and expandingk(v01V) up to
second order inV, one can derive approximate expressio
of Floquet exponents by standard multiple scale or averag
techniques. After setting S(V,k,z)5A(V,k,z)exp@i(kz

1kz8V)z#, where the amplitudeA is assumed to vary slowly
with respect toz as compared to the exponential term a
kz85k18kz /k1, one finds thatA satisfies the amplitude equa
tion:

FIG. 3. Same as Fig. 2, but for a pulse duration parametet0

515 fs.
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2ikz

]A~V,k,z!

]z
5r~V!A~V,k,z!2se f fA* ~2V,k,z!,

~37!

where se f f is given by Eq. ~11!, r(V,k)[kz
22k1

21k2

2(k1k191k18
22kz8

2)V2, and for first-order QPMkz is deter-
mined by the phase matching conditionk222kz562p/L.
The Lyapunov exponents associated with Eq.~37! can be
easily calculated and reads

l652 i
r~V,k!2r~2V,k!

4kz

6
1

4kz
A4use f fu22@r~V,k!1r~2V,k!#2. ~38!

The growth rate is thus maximized, reaching the valueq0
5use f fu/2kz , when the phase-matching conditionr~V,k!
1r~2V,k!50 is satisfied, which in terms of parametersk
andV reads explicitly

k5@k1
22kz

21~k1k191k18
22kz8

2!V2#1/2. ~39!

Note that Eq.~39! exactly reproduces the dispersion relati
k'5k'(V) for localized envelope waves given by Eq.~14!
after noting thatb50. This proves that the dispersion rel
tion for the cone angle of polychromatic Bessel beams fo
ing the envelope localized waves discussed in Sec. III A
actly matches the phase matching condition for maxim
parametric gain provided that the conditionkz85k18kz /k1, re-
lating envelope and phase velocities of the wave, is satisfi

IV. CONCLUSIONS AND DISCUSSION

In this paper we have studied the process of optical pa
metric amplification of localized envelope waves at carr
frequencyv0 in dispersive and nonlinearx (2) media pumped
by a plane-wave and continuous-wave pump field at f
quency 2v0 in the undepleted pump approximation. Th
phase matching condition for efficient parametric dow
conversion of pump photons, which can be controlled b
periodic QPM grating structure, determines the wave num
kz of the localized envelope wave for maximum paramet
gain, i.e., its phase velocityv f5v0 /kz , whereas the group
velocity vg51/kz8 of the envelope is determined by the add
tional constraintk1k185kzkz8 @k15k(v0) and k185(]k/v)v0

are fixed by the material dispersion properties#, which arises
from the simultaneous emission of photons at frequenc
v06V in the down conversion of pump photons at fr
quency 2v0. The parametric amplification of different kind
of localized envelope waves that satisfy such a constra
including pulsed Bessel beams, envelopeX waves, and sinc-
shaped envelope waves, has been studied in detail bot
the derivation of a generalized envelope equation in
paraxial and near-monochromatic limits and by a dir
analysis of the general nonparaxial equation using a p
chromatic Bessel beam expansion. The issue of param
instability and envelope localized waves has been addre
as well. It is envisaged that, similarly to what was found
6-7
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the case of modulational instability of plane waves in K
media @22#, envelope localized waves might be spontan
ously generated from noise due to the parametric instab

APPENDIX: DERIVATION OF THE GENERALIZED
PARAXIAL ENVELOPE EQUATION

In this appendix we derive the envelope equation~7! by a
multiple scale asymptotic analysis of Eq.~6! in the paraxial
approximation. First of all, it is worth rewriting Eq.~6! in
terms of dimensionless parameters and spatial-temporal
ables to highlight the order of magnitude of various ter
entering in the equation. After introducing the dimensionle
variables (x8,y8,z8)5kz3(x,y,z) and t85v0t, wherekz is
a wave number close to~but not necessarily coincident with!
k15k(v0), Eq. ~6! can be cast in the form

]2E 1

]z82
1¹'

2 E11

k2Fv0S 11 i
]

]t8
D G

kz
2

E1

52
s~z8!

kz
2

E1* exp~ ik2z8/kz!, ~A1!

where the transverse Laplacian is now applied to the (x8,y8)
spatial variables. The paraxial and quasimonochromatic
proximations imply thatE1 varies slowly with respect tox8,
y8 and t8, so that we assume thatE1 depends onx8, y8 and
t8 through the slow variablesX5ex8, Y5ey8, and T
5et8, wheree is a smallness parameter that is assumed
a bookkeeping parameter that organizes the asymp
analysis. The slow dependence ofE1 on t8 allows one to
make a power expansion of the operatork2@v0(11 i ] t8)#
entering in Eq.~A1!; up to order;e2, one can set

k2Fv0S 11 i
]

]t8
D G

kz
2

5
k1

2

kz
2

12iv0

k1k18

kz
2

]

]t8

2v0
2

k1k191k18
2

kz
2

]2

]t82
, ~A2!

wherek185(]k/]v)v0
andk195(]2k/]v2)v0

. In addition, we
consider the small parametric gain limit by assuming in E
~A1! s/kz

2;O(e2). Such a choice of scaling fors/kz
2 is

motivated by the need to make diffraction, dispersion, a
parametric gain terms appearing in Eq.~A1! of the same
order of magnitude. Our aim is now to search for a solut
of Eq. ~A1! as a power expansion ine,

E15E 1
(0)1eE 1

(1)1e2E 1
(2)1•••, ~A3!

such that at leading orderE 1
(0) describes a wave propagatin

with a phase velocityv f5v0 /kz and an envelope velocity
vg51/kz8 , where kz and kz8 are free parameters close t
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but not necessarily coincident with,k15k(v0) and k18
5(]k/]v)v0

, respectively. For consistency, it turns out th

one has to assume (kz2k1)/k1;O(e2) and (kz82k18)/k18
;O(e). Finally, slow spatial variablesZ05z8, Z15ez8,
Z25e2z8 are introduced to avoid the occurrence of secu
growing terms in the asymptotic expansion. With such co
siderations in mind and using Eq.~A2!, Eq. ~A1! can be
written in the form

]2E 1

]z82
1E1522iv0

kz8

kz

]E1

]t8

1F12
k1

2

kz
2

22iv0S k1k18

kz
2

2
kz8

kz
D ]

]t8

1
v0

2~k1k191k18
2!

kz
2

]2

]t82
2¹'

2 GE1

2
s

kz
2

E1* exp~ ik2z8/kz!. ~A4!

Note that with the chosen scaling, the last term in Eq.~A4!
and the operator in the square bracket on the right hand
turn out to be of order;e2, the first term on the right hand
side in Eq.~A4! is of order;e, and the terms on the lef
hand side are of order;e0. Substitution of the power ex
pansion~A3! into Eq. ~A4!, using the derivative rule]z8

2

5]Z0

2 12e]Z0
]Z1

1e2(]Z1

2 12]Z0
]Z2

) and setting equal the

terms of the same order ine, a hierarchy of equations fo
successive corrections toE1 is obtained. At leading order on
has

]2E 1
(0)

]Z0
2

1E 1
(0)50, ~A5!

the solution of which, for progressive waves, is

E 1
(0)5E1~X,Y,T,Z1 ,Z2!exp~ iZ0!, ~A6!

where the amplitudeE1 is an arbitrary function of slow vari-
ablesX,Y,T,Z1, andZ2. The evolution equations of the am
plitude E1 on the spatial scalesZ1 and Z2 are obtained as
solvability conditions in the asymptotic analysis at orders;e
and;e2, respectively. AtO(e) one obtains

]2E 1
(1)

]Z0
2

1E 1
(1)5U (1), ~A7!

where

U (1)[22
]2E 1

(0)

]Z0]Z1
22iv0

kz8

kz

]E 1
(0)

]T

522i S ]E1

]Z1
1v0

kz8

kz

]E1

]T Dexp~ iZ0!. ~A8!
6-8
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To avoid the occurrence of secular growths, terms oscilla
like ;exp(6iZ0) appearing inU (1) should vanish. This
yields the following solvability condition:

]E1

]Z1
1v0

kz8

kz

]E1

]T
50, ~A9!

and one can assumeE 1
(1)50 as a solution at this order. Th

physical meaning of Eq.~A9! is that, at leading order, th
envelopeE1 propagates undistorted at a group velocityvg

51/kz8 in terms of physical variables.
At O(e2) one obtains

]2E 1
(2)

]Z0
2

1E 1
(2)5U (2), ~A10!

where

U (2)[22
]2E 1

(0)

]Z0]Z2
2

]2E 1
(0)

]Z1
2

1S 12
k1

2

kz
2

2¹'
2 D E 1

(0)

2
2iv0

kz
S k1k18

kz
2kz8D ]E 1

(0)

]T
1S v0

kz
D 2

~k1k191k18
2!

3
]2E 1

(0)

]T2
2

s~Z0!

kz
2

E 1
(0)* exp~ ik2Z0 /kz!. ~A11!

The solvability condition at this order is obtained by impo
ing that the term oscillating like exp(iZ0) in the expression of
U (2) vanish. Note that the parametric gain contribution to
forcing term U (2) depends onZ0 by the term exp@i(k2 /kz
21)Z0#s(Z0), and hence it yields a nonvanishing contributi
to the solvability condition provided that the spatial periodL
of s(z) satisfies the phase-matching conditionuk222kzu
.2mp/L (m is an integer number! ands(z) has a nonva-
nishing Fourier component of orderm. Slight deviations
from perfect phase matching can be accounted for by all
ing s(z8) to depend slowly on the spatial scaleZ2. In the
following we will consider first-order QPM, i.e.,m51, and
assume perfect phase matching. In this case the solvab
condition atO(e2) reads
tt.

c.

ct

y
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22i
]E1

]Z2
2

]2E1

]Z1
2

1S 12
k1

2

kz
2

2¹'
2 D E12

2iv0

kz
S k1k18

kz
2kz8D

3
]E1

]T
1S v0

kz
D 2

~k1k191k18
2!

]2E1

]T2
2

se f f

kz
2

E1* 50, ~A12!

wherese f f is the relevant Fourier coefficient ofs(z), given
by Eq. ~11! in the text. Taking into account that]2E1 /]Z1

2

5(v0kz8/kz)
2]2E1 /]T2 @see Eq.~A9!#, Eq. ~A12! yields

]E1

]Z2
5

1

2i S 12
k1

2

kz
2

2¹'
2 D E12

v0

kz
S k1k18

kz
2kz8D ]E1

]T

1
1

2i S v0

kz
D 2

~k1k191k18
22kz8

2!
]2E1

]T2
2

se f f

2ikz
2

E1* .

~A13!

If we stop the asymptotic expansion at this order, the evo
tion equation of the amplitudeE1 reads ]E1 /]z8
5e]E1 /]Z11e2]E1 /]Z2. Using Eqs.~A9! and~A13!, after
reintroducing the original physical variables (x,y,z)
5(1/kz)3(x8,y8,z8), t5t8/v0 and settinge51, one finally
obtains the following amplitude equation for the envelo
E1(x,y,z,t):

2ikzS ]E1

]z
1kz8

]E1

]t D52¹'
2 E11g

]2E1

]t2

2 ib
]E1

]t
2aE12se f fE1* ,

~A14!

where the coefficientsa, b, andg are given by Eqs.~8!–~10!
in the text. In the reference frame traveling at the envelo
velocity vg51/kz8 , i.e. in the transformed variablesj5z and
t5t2kz8z, one obtains the envelope equation~7! given in
the text.
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